Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Compr Physiol ; 13(2): 4617-4630, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2276311

ABSTRACT

EVALI is an acute inflammatory disease in response to lung cell injury induced by electronic cigarettes and vaping devices (EV) frequently containing Vitamin E Acetate or tetrahydrocannabinol additives, in the context of risk factors such as microbial exposure. EVALI resembles a respiratory viral illness that may progress to acute respiratory failure and acute respiratory distress syndrome (ARDS) but can also affect extra pulmonary organs. Manifestations may be severe, leading to death or long-term morbidity and current treatments are largely supportive. While COVID-19 has demanded public and research attention, EVALI continues to affect young individuals and its better understanding via research remains a priority. Although clinical research led to improved recognition of triggers, clinical and pathological manifestations, and natural course of EVALI, important questions remain that require a better understanding of disease pathogenesis. Preclinical models utilizing laboratory animals and cell or tissue culture platforms provide insight into the physiologic and mechanistic consequences of acute and chronic EV exposure, including the characteristics of the respiratory dysfunction and inflammatory response. However, a key limitation in the field is the absence of an established animal model of EVALI. Important areas of research emphasis include identifying triggers and risk factors to understand why only certain vapers develop EVALI, the role of specific lung immune and structural cells in the pathogenesis of EVALI, and the most important molecular mediators and therapeutic targets in EVALI. © 2023 American Physiological Society. Compr Physiol 13:4617-4630, 2023.


Subject(s)
COVID-19 , Electronic Nicotine Delivery Systems , Lung Injury , Vaping , United States , Humans , Lung Injury/chemically induced , COVID-19/complications , Dronabinol/adverse effects , Vaping/adverse effects
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2235591

ABSTRACT

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Subject(s)
COVID-19 , Lung Injury , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , COVID-19/complications , Fibrosis , Plasminogen , Bleomycin/toxicity
3.
Chest ; 162(1): 256-264, 2022 07.
Article in English | MEDLINE | ID: covidwho-2158581

ABSTRACT

BACKGROUND: In 2019, the United States experienced a nationwide outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI). More than one-half of these patients required admission to an ICU. RESEARCH QUESTION: What are the recent literature and expert opinions which inform the diagnosis and management of patients with critical illness with EVALI? STUDY DESIGN AND METHODS: To synthesize information critical to pulmonary/critical care specialists in the care of patients with EVALI, this study examined data available from patients hospitalized with EVALI between August 2019 and January 2020; reviewed the clinical course and critical care experience with those patients admitted to the ICU; and compiled opinion of national experts. RESULTS: Of the 2,708 patients with confirmed or probable EVALI requiring hospitalization as of January 21, 2020, a total of 1,604 (59.2%) had data available on ICU admission; of these, 705 (44.0%) were admitted to the ICU and are included in this analysis. The majority of ICU patients required respiratory support (88.5%) and in severe cases required intubation (36.1%) or extracorporeal membrane oxygenation (6.7%). The majority (93.0%) of these ICU patients survived to discharge. Review of the clinical course and expert opinion provided insight into: imaging; considerations for bronchoscopy; medical treatment, including use of empiric antibiotics, antiviral agents, and corticosteroids; respiratory support, including considerations for intubation, positioning maneuvers, and extracorporeal membrane oxygenation; and patient outcomes. INTERPRETATION: Review of the clinical course of patients with EVALI requiring ICU admission and compilation of expert opinion provided critical insight into pulmonary/critical care-specific considerations for this patient population. Because a large proportion of patients hospitalized with EVALI required ICU admission, it is important to remain prepared to care for patients with EVALI.


Subject(s)
Electronic Nicotine Delivery Systems , Lung Injury , Vaping , Critical Care , Humans , Lung , Lung Injury/chemically induced , Lung Injury/epidemiology , United States/epidemiology , Vaping/adverse effects
4.
Zhonghua Zhong Liu Za Zhi ; 42(4): 305-311, 2020 Apr 23.
Article in Chinese | MEDLINE | ID: covidwho-2033195

ABSTRACT

Objective: To investigate the principles of differential diagnosis of pulmonary infiltrates in cancer patients during the outbreak of novel coronavirus (2019-nCoV) by analyzing one case of lymphoma who presented pulmonary ground-glass opacities (GGO) after courses of chemotherapy. Methods: Baseline demographics and clinicopathological data of eligible patients were retrieved from medical records. Information of clinical manifestations, history of epidemiology, lab tests and chest CT scan images of visiting patients from February 13 to February 28 were collected. Literatures about pulmonary infiltrates in cancer patients were searched from databases including PUBMED, EMBASE and CNKI. Results: Among the 139 cancer patients who underwent chest CT scans before chemotherapy, pulmonary infiltrates were identified in eight patients (5.8%), five of whom were characterized with GGOs in lungs. 2019-nCoV nuclear acid testing was performed in three patients and the results were negative. One case was a 66-year-old man who was diagnosed with non-Hodgkin lymphoma and underwent CHOP chemotherapy regimen. His chest CT scan image displayed multiple GGOs in lungs and the complete blood count showed decreased lymphocytes. This patient denied any contact with confirmed/suspected cases of 2019-nCoV infection, fever or other respiratory symptoms. Considering the negative result of nuclear acid testing, this patient was presumptively diagnosed with viral pneumonia and an experiential anti-infection treatment had been prescribed for him. Conclusions: The 2019 novel coronavirus disease (COVID-19) complicates the clinical scenario of pulmonary infiltrates in cancer patients. The epidemic history, clinical manifestation, CT scan image and lab test should be taken into combined consideration. The 2019-nCoV nuclear acid testing might be applied in more selected patients. Active anti-infection treatment and surveillance of patient condition should be initiated if infectious disease is considered.


Subject(s)
Antineoplastic Agents/therapeutic use , Coronavirus Infections/diagnostic imaging , Coronavirus , Lung Injury/chemically induced , Lung Injury/diagnostic imaging , Lung/diagnostic imaging , Neoplasms/drug therapy , Pneumonia, Viral/diagnostic imaging , Aged , Antineoplastic Agents/adverse effects , Betacoronavirus , COVID-19 , Coronavirus/pathogenicity , Coronavirus Infections/epidemiology , Cross Infection/prevention & control , Diagnosis, Differential , Disease Outbreaks/prevention & control , Humans , Male , Neoplasms/pathology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Tomography, X-Ray Computed
5.
Toxicology ; 479: 153318, 2022 09.
Article in English | MEDLINE | ID: covidwho-2008153

ABSTRACT

Cigarette smoke (CS) significantly contributes to the development of chronic obstructive pulmonary disease (COPD). Heated tobacco products (HTPs), newly developed cigarette products, have been proposed as an alternative for safe cigarette smoking. Although it is plausible to think that replacing traditional cigarettes with HTPs would lower the risks of COPD, this notion requires confirmation by further investigations from sources independent of the tobacco industry. COPD is characterized by an ongoing inflammatory process in the lungs, and the renin-angiotensin system (RAS) has been implicated in the pathogenesis of COPD. Angiotensin-converting enzyme-2 (ACE2) functions as a negative regulator of RAS and has been suggested as a cellular receptor for the causative agent of SARS-CoV-2. It has been shown that smoking is most likely associated with the negative progression and adverse outcomes of SARS-CoV-2. In this study, we found that cigarette smoke extracts from traditional cigarettes (CSE) caused higher cytotoxicity and higher oxidative stress levels than extracts from HTPs (HTPE) in two lung cell lines (Calu-3 and Beas-2B). CSE and HTPE induced RAS activation, MAPK activation, and NF-kB inflammatory pathway activation, resulting in the production of inflammatory cytokines. Furthermore, CSE and a high dose of HTPE reduced tight junction proteins, including claudin 1, E-cadherin, and ZO-1, and disrupted lung epidermal tight junctions at the air-liquid interface (ALI). Finally, CSE and HTPE enhanced the spike protein S1-induced lung injury response. Together, these results suggest that HTPE induced similar lung pathogenesis relevant to COPD and SARS-CoV-2-induced lung injury caused by CSE.


Subject(s)
COVID-19 , Lung Diseases , Lung Injury , Pulmonary Disease, Chronic Obstructive , Tobacco Products , Angiotensin-Converting Enzyme 2 , Angiotensins , Cadherins , Claudin-1 , Cytokines , Lung Diseases/pathology , Lung Injury/chemically induced , NF-kappa B , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tight Junction Proteins , Tobacco , Tobacco Products/toxicity
6.
Exp Anim ; 71(3): 316-328, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1978875

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) damages lung epithelial stem/progenitor cells. Ideal anti-SARS-CoV-2 drug candidates should be screened to prevent secondary injury to the lungs. Here, we propose that in vitro three-dimensional organoid and lung injury repair mouse models are powerful models for the screening antiviral drugs. Lung epithelial progenitor cells, including airway club cells and alveolar type 2 (AT2) cells, were co-cultured with supportive fibroblast cells in transwell inserts. The organoid model was used to evaluate the possible effects of hydroxychloroquine, which is administered as a symptomatic therapy to the coronavirus disease 2019 (COVID-19) patients, on the function of mouse lung stem/progenitor cells. Hydroxychloroquine was observed to promote the self-renewal of club cells and differentiation of ciliated and goblet cells in vitro. Additionally, it inhibited the self-renewal ability of AT2 cells in vitro. Naphthalene- or bleomycin-induced lung injury repair mouse models were used to investigate the in vivo effects of hydroxychloroquine on the regeneration of club and AT2 cells, respectively. The naphthalene model indicated that the proliferative ability and differentiation potential of club cells were unaffected in the presence of hydroxychloroquine. The bleomycin model suggested that hydroxychloroquine had a limited effect on the proliferation and differentiation abilities of AT2 cells. These findings suggest that hydroxychloroquine has limited effects on the regenerative ability of epithelial stem/progenitor cells. Thus, stem/progenitor cell-derived organoid technology and lung epithelial injury repair mouse models provide a powerful platform for drug screening, which could possibly help end the pandemic.


Subject(s)
COVID-19 Drug Treatment , Lung Injury , Animals , Bleomycin , Cell Differentiation , Disease Models, Animal , Hydroxychloroquine/pharmacology , Lung , Lung Injury/chemically induced , Lung Injury/drug therapy , Mice , Naphthalenes , Organoids , Regeneration , SARS-CoV-2 , Technology
7.
Int J Biol Macromol ; 198: 101-110, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1587672

ABSTRACT

Respiratory infected by COVID-19 represents a major global health problem at moment even after recovery from virus corona. Since, the lung lesions for infected patients are still sufferings from acute respiratory distress syndrome including alveolar septal edema, pneumonia, hyperplasia, and hyaline membranes Therefore, there is an urgent need to identify additional candidates having ability to overcome inflammatory process and can enhance efficacy in the treatment of COVID-19. The polypenolic extracts were integrated into moeties of bovine serum albumin (BSA) and then were coated by chitosan as a mucoadhesion polymer. The results of interleukin-6, and c-reactive protein showed significant reduction in group treated by Encap. SIL + CUR (64 ± 0.8 Pg/µL & 6 ± 0.5 µg/µL) compared to group treated by Cham. + CUR (102 ± 0.8 Pg/µL & 7 ± 0.5 µg/µL) respectively and free capsules (with no any drug inside) (148 ± 0.6 Pg/µL & 10 ± 0.6 µg/µL) respectively. Histopathology profile was improved completely. Additionally, encapsulating silymarin showed anti-viral activity in vitro COVID-19 experiment. It can be summarized that muco-inhalable delivery system (MIDS) loaded by silymarin can be used to overcome inflammation induced by oleic acid and to overcome COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Curcumin/pharmacology , Lung Injury/drug therapy , Nanoparticles/chemistry , Silymarin/pharmacology , Administration, Inhalation , Animals , Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , C-Reactive Protein/metabolism , Chamomile/chemistry , Chitosan/chemistry , Chlorocebus aethiops , Curcumin/administration & dosage , Drug Delivery Systems/methods , Flavonoids/analysis , Flavonoids/chemistry , Interleukin-6/metabolism , Lung Injury/blood , Lung Injury/chemically induced , Lung Injury/pathology , Male , Mice , Milk Thistle/chemistry , Nanoparticles/administration & dosage , Oleic Acid/toxicity , Silymarin/administration & dosage , Vero Cells , Viral Plaque Assay
8.
Mol Med Rep ; 24(4)2021 Oct.
Article in English | MEDLINE | ID: covidwho-1395036

ABSTRACT

Chronic alcohol abuse increases the risk of mortality and poor outcomes in patients with acute respiratory distress syndrome. However, the underlying mechanisms remain to be elucidated. The present study aimed to investigate the effects of chronic alcohol consumption on lung injury and clarify the signaling pathways involved in the inhibition of alveolar fluid clearance (AFC). In order to produce rodent models with chronic alcohol consumption, wild­type C57BL/6 mice were treated with alcohol. A2a adenosine receptor (AR) small interfering (si)RNA or A2bAR siRNA were transfected into the lung tissue of mice and primary rat alveolar type II (ATII) cells. The rate of AFC in lung tissue was measured during exposure to lipopolysaccharide (LPS). Epithelial sodium channel (ENaC) expression was determined to investigate the mechanisms underlying alcohol­induced regulation of AFC. In the present study, exposure to alcohol reduced AFC, exacerbated pulmonary edema and worsened LPS­induced lung injury. Alcohol caused a decrease in cyclic adenosine monophosphate (cAMP) levels and inhibited α­ENaC, ß­ENaC and γ­ENaC expression levels in the lung tissue of mice and ATII cells. Furthermore, alcohol decreased α­ENaC, ß­ENaC and γ­ENaC expression levels via the A2aAR or A2bAR­cAMP signaling pathways in vitro. In conclusion, the results of the present study demonstrated that chronic alcohol consumption worsened lung injury by aggravating pulmonary edema and impairing AFC. An alcohol­induced decrease of α­ENaC, ß­ENaC and γ­ENaC expression levels by the A2AR­mediated cAMP pathway may be responsible for the exacerbated effects of chronic alcohol consumption in lung injury.


Subject(s)
Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Epithelial Sodium Channels/drug effects , Epithelial Sodium Channels/metabolism , Ethanol/pharmacology , Receptors, Adenosine A2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Alveolar Epithelial Cells/pathology , Animals , Cyclic AMP/metabolism , Cytokines , Lipopolysaccharides/adverse effects , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Mice , Mice, Inbred C57BL , Pulmonary Alveoli/metabolism , Pulmonary Edema/chemically induced , Pulmonary Edema/metabolism , Pulmonary Edema/pathology , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Rats , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Signal Transduction
9.
BMJ Case Rep ; 14(7)2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1322781

ABSTRACT

SARS-CoV-2, the novel coronavirus causing COVID-19, has caused a global pandemic resulting in over 4 million deaths globally (data current as of 14 July 2021). E-cigarette or vaping product use-associated lung injury (EVALI) is a type of acute lung injury of unclear pathogenesis. The two pathologies present with overlapping clinical symptoms, laboratory values and imaging, making them difficult to distinguish, especially in the setting of a global COVID-19 pandemic. We present the case of a 32-year-old woman treated for COVID-19 despite multiple negative SARS CoV-2 PCR tests and nucleocapsid antibody test. On further investigation, she endorsed use of E-cigarettes and was subsequently diagnosed with EVALI. The patient was treated with oral and intravenous steroids, resulting in significant improvement in her symptoms. This case highlights the challenge of diagnosing rarer aetiologies of respiratory distress during the COVID-19 pandemic.


Subject(s)
COVID-19 , Electronic Nicotine Delivery Systems , Lung Injury , Vaping , Adult , Female , Humans , Lung Injury/chemically induced , Lung Injury/diagnosis , Pandemics , SARS-CoV-2 , Vaping/adverse effects
10.
Physiol Rep ; 9(13): e14802, 2021 07.
Article in English | MEDLINE | ID: covidwho-1305905

ABSTRACT

In severe acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) is a life-prolonging treatment, especially among COVID-19 patients. Evaluation of lung injury progression is challenging with current techniques. Diagnostic imaging or invasive diagnostics are risky given the difficulties of intra-hospital transportation, contraindication of biopsies, and the potential for the spread of infections, such as in COVID-19 patients. We have recently shown that particle flow rate (PFR) from exhaled breath could be a noninvasive, early detection method for ARDS during mechanical ventilation. We hypothesized that PFR could also measure the progress of lung injury during ECMO treatment. Lipopolysaccharide (LPS) was thus used to induce ARDS in pigs under mechanical ventilation. Eight were connected to ECMO, whereas seven animals were not. In addition, six animals received sham treatment with saline. Four human patients with ECMO and ARDS were also monitored. In the pigs, as lung injury ensued, the PFR dramatically increased and a particular spike followed the establishment of ECMO in the LPS-treated animals. PFR remained elevated in all animals with no signs of lung recovery. In the human patients, in the two that recovered, PFR decreased. In the two whose lung function deteriorated while on ECMO, there was increased PFR with no sign of recovery in lung function. The present results indicate that real-time monitoring of PFR may be a new, complementary approach in the clinic for measurement of the extent of lung injury and recovery over time in ECMO patients with ARDS.


Subject(s)
COVID-19/physiopathology , Lipopolysaccharides/toxicity , Lung Injury/physiopathology , Lung/physiopathology , Particulate Matter/analysis , Respiratory Distress Syndrome/physiopathology , Animals , Blood Gas Analysis/methods , COVID-19/chemically induced , Extracorporeal Membrane Oxygenation/methods , Lung/drug effects , Lung Injury/chemically induced , Particulate Matter/adverse effects , Respiration, Artificial/methods , Respiratory Distress Syndrome/chemically induced , Swine
11.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: covidwho-1223641

ABSTRACT

Mice are normally unaffected by SARS coronavirus 2 (SARS-CoV-2) infection since the virus does not bind effectively to the murine version of the angiotensin-converting enzyme 2 (ACE2) receptor molecule. Here, we report that induced mild pulmonary morbidities rendered SARS-CoV-2-refractive CD-1 mice susceptible to this virus. Specifically, SARS-CoV-2 infection after application of low doses of the acute lung injury stimulants bleomycin or ricin caused severe disease in CD-1 mice, manifested by sustained body weight loss and mortality rates greater than 50%. Further studies revealed markedly higher levels of viral RNA in the lungs, heart, and serum of low-dose ricin-pretreated mice compared with non-pretreated mice. Furthermore, lung extracts prepared 2-3 days after viral infection contained subgenomic mRNA and virus particles capable of replication only when derived from the pretreated mice. The deleterious effects of SARS-CoV-2 infection were effectively alleviated by passive transfer of polyclonal or monoclonal antibodies generated against the SARS-CoV-2 receptor binding domain (RBD). Thus, viral cell entry in the sensitized mice seems to depend on viral RBD binding, albeit by a mechanism other than the canonical ACE2-mediated uptake route. This unique mode of viral entry, observed over a mildly injured tissue background, may contribute to the exacerbation of coronavirus disease 2019 (COVID-19) pathologies in patients with preexisting morbidities.


Subject(s)
Bleomycin/toxicity , COVID-19/pathology , Lung Injury , Ricin/toxicity , Animals , Chlorocebus aethiops , Comorbidity , Disease Models, Animal , Female , Lung Injury/chemically induced , Lung Injury/virology , Mice , Vero Cells , Virus Attachment , Virus Internalization/drug effects
12.
Rinsho Ketsueki ; 62(1): 30-34, 2021.
Article in Japanese | MEDLINE | ID: covidwho-1069962

ABSTRACT

From December 2019, a 71-year-old male underwent three cycles of a combination therapy of pomalidomide, bortezomib, and dexamethasone for relapsed multiple myeloma and a very good partial response was achieved. In March 2020, he developed a fever of 38.9°C and computed tomography revealed bilateral ground-glass opacities. Antibiotic therapy was ineffective. Bronchoscopy was performed and bortezomib-induced lung injury was initially suspected. Due to respiratory exacerbation, high-dose steroid therapy was administered, which resulted in a dramatic improvement of the patient's respiratory failure. Thereafter, reverse transcription polymerase chain reaction performed on a preserved bronchial lavage sample tested positive, and thus his diagnosis was corrected to COVID-19 pneumonia. It is difficult to discriminate COVID-19 pneumonia from drug-induced lung disease, as both disorders can present similar ground-glass opacities on computed tomography. Therefore, with this presented case, we summarize our experience with steroid therapy for COVID-19 associated respiratory distress at our institution.


Subject(s)
Bortezomib/adverse effects , COVID-19 , Lung Injury , Respiratory Insufficiency , Aged , Humans , Lung Injury/chemically induced , Male , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/diagnosis , SARS-CoV-2 , Steroids
13.
J Emerg Med ; 60(4): 524-530, 2021 04.
Article in English | MEDLINE | ID: covidwho-1042305

ABSTRACT

BACKGROUND: E-cigarette or vaping product use-associated lung injury (EVALI) is a complex inflammatory syndrome predominantly seen in adolescents and young adults. The clinical and laboratory profile can easily mimic infectious and noninfectious conditions. The exclusion of these conditions is essential to establish the diagnosis. Recently, the novel coronavirus disease 2019 (COVID-19) pandemic introduced the multisystem inflammatory syndrome in children (MIS-C). MIS-C knowledge is evolving. The current criteria to establish the diagnosis are not specific and have overlapping features with EVALI, making the accurate diagnosis a clinical challenge during continued COVID-19 transmission within the community. CASE REPORT: Three young adults evaluated at our emergency department for prolonged fever and gastrointestinal and respiratory symptoms were initially assessed for possible MIS-C due to epidemiologic links to COVID-19 and were eventually diagnosed with EVALI. The clinical, laboratory, and radiologic characteristics of both entities are explored, as well as the appropriate medical management. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Physician awareness of overlapping and differentiating EVALI and MIS-C features is essential to direct appropriate diagnostic evaluation and medical management of adolescents and young adults presenting with systemic inflammatory response during the unfolding pandemic of COVID-19.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , Electronic Nicotine Delivery Systems , Lung Injury/chemically induced , Systemic Inflammatory Response Syndrome/epidemiology , Vaping/adverse effects , Female , Humans , Lung Injury/epidemiology , Male , SARS-CoV-2 , Young Adult
14.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L585-L595, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-991951

ABSTRACT

In 2019, the United States experienced the emergence of the vaping-associated lung injury (VALI) epidemic. Vaping is now known to result in the development and progression of severe lung disease in the young and healthy. Lack of regulation on electronic cigarettes in the United States has resulted in over 2,000 patients and 68 deaths. We examine the clinical representation of VALI and the delve into the scientific evidence of how deadly exposure to electronic cigarettes can be. E-cigarette vapor is shown to affect numerous cellular processes, cellular metabolism, and cause DNA damage (which has implications for cancer). E-cigarette use is associated with a higher risk of developing crippling lung conditions such as chronic obstructive pulmonary disease (COPD), which would develop several years from now, increasing the already existent smoking-related burden. The role of vaping and virus susceptibility is yet to be determined; however, vaping can increase the virulence and inflammatory potential of several lung pathogens and is also linked to an increased risk of pneumonia. As it has emerged for cigarette smoking, great caution should also be given to vaping in relation to SARS-CoV-2 infection and the COVID-19 pandemic. Sadly, e-cigarettes are continually promoted and perceived as a safer alternative to cigarette smoking. E-cigarettes and their modifiable nature are harmful, as the lungs are not designed for the chronic inhalation of e-cigarette vapor. It is of interest that e-cigarettes have been shown to be of no help with smoking cessation. A true danger lies in vaping, which, if ignored, will lead to disastrous future costs.


Subject(s)
E-Cigarette Vapor/toxicity , Lung Diseases, Interstitial/epidemiology , Lung Injury/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Vaping/adverse effects , Adolescent , Betacoronavirus , COVID-19 , Coronavirus Infections/pathology , Disease Susceptibility/chemically induced , Electronic Nicotine Delivery Systems/statistics & numerical data , Female , Humans , Lung Diseases, Interstitial/chemically induced , Lung Injury/chemically induced , Lung Injury/mortality , Male , Middle Aged , Pandemics , Pneumonia/epidemiology , Pneumonia, Viral/pathology , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/mortality , SARS-CoV-2 , Smoking Cessation/methods , United States/epidemiology , Vaping/epidemiology , Vaping/mortality
16.
J Am Heart Assoc ; 9(18): e017368, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-748837

ABSTRACT

E-cigarette or vaping product use-associated lung injury was recognized in the United States in the summer of 2019 and is typified by acute respiratory distress, shortness of breath, chest pain, cough, and fever, associated with vaping. It can mimic many of the manifestations of coronavirus disease 2019 (COVID-19). Some investigators have suggested that E-cigarette or vaping product use-associated lung injury was due to tetrahydrocannabinol or vitamin E acetate oil mixed with the electronic cigarette liquid. In experimental rodent studies initially designed to study the effect of electronic cigarette use on the cardiovascular system, we observed an E-cigarette or vaping product use-associated lung injury-like condition that occurred acutely after use of a nichrome heating element at high power, without the use of tetrahydrocannabinol, vitamin E, or nicotine. Lung lesions included thickening of the alveolar wall with foci of inflammation, red blood cell congestion, obliteration of alveolar spaces, and pneumonitis in some cases; bronchi showed accumulation of fibrin, inflammatory cells, and mucus plugs. Electronic cigarette users should be cautioned about the potential danger of operating electronic cigarette units at high settings; the possibility that certain heating elements may be deleterious; and that E-cigarette or vaping product use-associated lung injury may not be dependent upon tetrahydrocannabinol, vitamin E, or nicotine.


Subject(s)
Dronabinol/toxicity , E-Cigarette Vapor/toxicity , Electronic Nicotine Delivery Systems , Lung Injury/chemically induced , Lung/drug effects , Pneumonia/chemically induced , Vaping/adverse effects , Vitamin E/toxicity , Animals , Inhalation Exposure , Lung/pathology , Lung Injury/pathology , Models, Animal , Oils , Pneumonia/pathology , Rats , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL